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1 Symmetric closure of modules

2 Symmetric groups and factorizations

3 Symmetrically closed graphs and their diameters
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Definition
Let M be a right R-module. Two elements m, n ∈ M are
symmetrically connected if there exist m′ ∈ M and a, b ∈ R such that
m = m′ab and n = m′ba. We denote this situation by m 1∼ n.
Two elements m, n ∈ M are symmetrically related if there exists a
finite chain of symmetrically connected elements
m = m0

1∼ m1
1∼ · · · 1∼ mℓ = n. We will write m ∼ n when m and n

are symmetrically related.
For an element m ∈ M, we put {̂m} := {n ∈ M | n ∼ m}, and we say
that an element m ∈ M is symmetrically closed when {̂m} = {m}.
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Example
1 If R is a commutative ring, then two elements of a module MR are

symmetrically connected if and only if they are equal.
2 Recall that a ring R is said to be symmetric if and only if for any

a, b, c ∈ R, abc = 0 implies acb = 0. If M = RR, then {̂0} = {0} if
and only if the ring R is symmetric.

3 For a ring R, Let U(R) and U(R)′ = ⟨[u, v] = uvu−1v−1 : u, v ∈ R⟩
denote the group of units of R and its derived group, respectively. If
m ∈ MR, then we always have m(U(R))′ ⊆ {̂m}; indeed, if
u, v ∈ U(R), then m[u, v] = muvu−1v−1 1∼ muvv−1u−1 = m.
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Definition
Let m be a nonzero element in a module MR. Also, let
rann(r) := {s ∈ R | rs = 0} and ann(m) = {x ∈ R | mx = 0}. We say
that r divides m if rann(r) ⊆ ann(m) and there exists m′ ∈ M such
that m = m′r.
Recall that an element r in a ring R is called regular if there exists x in
R such that r = rxr. We denote the set of regular elements by Reg(R).
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Proposition
Let m ∈ MR be a nonzero element of a right R-module. Suppose
r ∈ Reg(R) is such that rann(r) ⊆ ann(m). Then mx{̂r} ⊆ {̂m}, where x
is any quasi inverse of r, that is, we have r = rxr.
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Definition
We say that an element m ∈ MR is an atom if the only elements r ∈ R
dividing m are the units elements of R.

Proposition
If p ∈ M is an atom, then we have p(U(R))′ = {̂p}.
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Definition
Let R be a unitary ring and a, b ∈ R. We write:
■ ▶ a c∼1 b if there exist x, y ∈ R such that a = xy and b = yx.

▶ a ∗∼1 b if there exist x, y, z ∈ R such that a = xyz and b = xzy.
▶ a∼̂1b if there exist n ∈ N, x1, x2, . . . , xn ∈ R and π ∈ Sn such that

a = x1x2 · · · xn and b = xπ(1)xπ(2) · · · xπ(n).
■ For s ∈ {c, ∗,∧}, we define

▶ a s∼ℓ b if there exist x1, x2, . . . , xℓ ∈ R such that

a s∼1 x1
s∼1 x2

s∼1 · · · s∼1 xℓ = b.

▶ a s∼ b if there exists ℓ ∈ N such that a s∼ℓ b.
▶ {a}s = {b ∈ R | a s∼ b}. We also write {a} for {a}c and {̂a} for {a}∧.
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Definition
Let S be a subset of a ring R. We define the symmetric closure of S
as Ŝ =

⋃
s∈S {̂s}.

S is called symmetrically closed if S = Ŝ.
For s ∈ {c, ∗,∧}, we define

Ss
n = {x ∈ R | ∃ x0 ∈ S such that x s∼n x0 }.

In particular, for any s ∈ S, we have {s}∗ =
⋃

n≥0 {s}∗n.
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Definition
A ring R is called Dedekind-finite if for any a, b ∈ R, we have ab = 1
implies ba = 1.

Proposition
Let S ⊆ R be a subset of a Dedekind-finite ring R. Then the following
statements hold:

If S is a group, then Ŝ is a group as well.
{1}∗n is the set of products of at most n commutators.
The closed set {̂1} is the derived group U(R)′ of the group of units of
R.
If S ⊆ U(R), then Ŝ = S(U(R))′.

Symmetric closure in modules and rings Artois University August 29, 2023 10 / 23



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Definition
A ring R is called Dedekind-finite if for any a, b ∈ R, we have ab = 1
implies ba = 1.

Proposition
Let S ⊆ R be a subset of a Dedekind-finite ring R. Then the following
statements hold:

If S is a group, then Ŝ is a group as well.
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Corollary
Let R be a ring. Then the following statements are equivalent:
♦ R is Dedekind-finite.
♦ {1} = {1}.
♦ {̂1} = U(R)′.

Moreover, when R is Dedekind-finite, we have for any a ∈ U(R),
{̂a} = a{̂1}.
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Example
Let H denote the division ring of real quaternions. For
x = a0 + a1i + a2j + a3k ∈ H we define N(x) = a2

0 + a2
1 + a2

2 + a2
3.

Moreover, let Γ := {x ∈ H : N(x) = 1}. Then {̂1} = Γ.
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Definition
A ring R is called reversible if for any a, b ∈ R, we have ab = 0 implies
that ba = 0.
A ring R is said to be semi-commutative if for any a, b ∈ R, we have
ab = 0 implies aRb = 0. Furthermore, any reversible ring is
semi-commutative.

Proposition
If R is semi-commutative, then N(R) is symmetrically closed, where N(R)
denotes the set of nilpotent elements of the ring R. In particular, this
holds if R is reversible.
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Theorem
Let D be a division ring, n ∈ N, A ∈ Mn(D), and GLn(D) denotes the
general linear group of non-singular n × n matrices with entries in D. Also,
let In denote the identity matrix. Then the following statements hold:
♦ {̂In} = GLn(D)′.
♦ If A ∈ GLn(D), then Â = A{̂In}.
♦ If A is singular, then Â = {̂0}.

Lemma
Assume that R and S are two rings, and (r, s) ∈ R × S. Then
{̂(r, s)} = {̂r} × {̂s}.
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♦ If A is singular, then Â = {̂0}.
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Definition
Let R be a unitary ring R and s ∈ {c, ∗,∧}.
▶ The elements of a class determined by s∼ can be seen as the set of

vertices of a graph. Two elements x, y in the same class are said to be
adjacent if x s∼1 y.

▶ Let x, y ∈ R be such that x s∼ y, we define
ds(x, y) = min{n ∈ N | x s∼n y}. We adopt the convention that
ds(x, x) = 0. It is not hard to check that ds is a distance. This
distance corresponds to the minimal length of the paths between two
elements (vertices) in a class determined by s∼.

▶ For a subset S of R, we define

diams(S) = sup{ds(x, y) | x, y ∈ S and x s∼ y}.
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Theorem
Let R be a unitary ring. Then the following statements hold:
• If t ∈ {̂z}, then for any m ∈ N, tm ∈ {̂zm}.
• A subset S of R is symmetrically closed and connected if and only if

S = {̂z} for some z ∈ R.
• For any subset S of R, diam∧(S) ≤ diam∧(Ŝ) (respectively,

diam∗(S) ≤ diam∗(Ŝ)).
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Proposition
Let S be a subset of a ring R. Then the following statements hold:
■ diam∗(S) ≤ diamc(S). In particular, if diamc(S) (respectively,

diam∗(S)) is finite (respectively, infinite), then diam∗(S)
(respectively, diamc(S)) is finite (respectively, infinite).

■ If R is a non-commutative Dedekind-finite, then diam∗(U(R)) = 1. In
particular, if D is a division ring, then diam∗(D) = 1.
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Proposition
Assume that z is an element in a ring R. If n ∈ N is the minimal number
such that {̂z} = {̂z}n, then n ≤ diam∧({̂z}) ≤ 2n.

Proposition
Let R and S be two rings. Also, let diam∧(R) = n and diam∧(S) = m.
Then diam∧(R × S) = max{n,m}.
In addition, a similar result holds replacing diam∧ by diam∗.
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Theorem
Let D be a division ring and n ∈ N. Then diam∧(Mn(D)) ≤ 2.

Theorem
Let R be an Artinian semisimple ring. Then diam∧(R) ≤ 2.

Theorem
Let F be a field and n ∈ N. Then diam∧(Mn(F)) = 1.
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Proposition
Let n ∈ N, and let D be a division ring such that n ≠ 2 and D ≠ F2. Let
A,B ∈ GLn(D) be two matrices such that B ∈ {̂A}. Let SLn(D) denote
the special linear group of degree n over D, which is the set of n × n
matrices with determinant 1. Then AB−1 ∈ SLn(D) and d∗(A,B) is the
minimal number of commutators required to express AB−1 as products of
commutators in GLn(D).

Proposition
▶ Let F2 = F ∈ Mn(D) be of rank k. Then d∗(F, 0) ≤ ⌈n/(n − k)⌉.
▶ Let A,B ∈ Mn(D) be two singular matrices, and let A (respectively,

B) be a product of k ≥ 1 (respectively, ℓ ≥ 1) matrices similar to
E = diag(1, . . . , 1, 0). Then d∗(A,B) ≤ k + ℓ.

▶ diam∗({̂0}) ≤ 2n.
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Definition
Recall that a strictly upper triangular matrix is an upper triangular
matrix having 1’s along the diagonal and 0’s under it, i.e., a matrix
A = [ai,j] such that ai,j = 0 for all i ≥ j and aii = 1. We denote the set
of all n × n strictly upper triangular matrix over a ring R by Un(R).
For a ring R and n ∈ N, we denote Nn(R) as the set of elements of R
that are nilpotent of index n.
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Theorem
Let R be a ring. Then the following statements hold:
■ If R is semi-commutative, then, for each i ∈ N, we have

{0}∗i ⊆ N2i(R). In particular, {0}∗ ⊆ N(R).
■ For any strictly upper triangular matrix U ∈ Mn(R), we have

(a) U ∈ {̂0}n−1 ⊆ {̂0} and U ∈ {0}∗n−1 ⊆ {0}∗.
(b) diam∧(Un(R)) ≤ 2(n − 1) and diam∗(Un(R)) ≤ 2(n − 1) for all n ≥ 2.
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Thank you for your attention
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