# Symmetric closure in modules and rings

Mehrdad Nasernejad (joint work with André Leroy)

Artois University August 29, 2023

Symmetric closure in modules and rings Artois University August 29, 2023 1/23













- Let M be a right R-module. Two elements m, n ∈ M are symmetrically connected if there exist m' ∈ M and a, b ∈ R such that m = m'ab and n = m'ba. We denote this situation by m <sup>1</sup> ∧ n.
- Two elements  $m, n \in M$  are symmetrically related if there exists a finite chain of symmetrically connected elements  $m = m_0 \stackrel{1}{\sim} m_1 \stackrel{1}{\sim} \cdots \stackrel{1}{\sim} m_\ell = n$ . We will write  $m \sim n$  when m and n are symmetrically related.
- For an element m ∈ M, we put {m} := {n ∈ M | n ~ m}, and we say that an element m ∈ M is symmetrically closed when {m} = {m}.

### Example

- If R is a commutative ring, then two elements of a module  $M_R$  are symmetrically connected if and only if they are equal.
- Q Recall that a ring R is said to be symmetric if and only if for any a, b, c ∈ R, abc = 0 implies acb = 0. If M = R<sub>R</sub>, then {0} = {0} if and only if the ring R is symmetric.
- For a ring R, Let U(R) and U(R)' = ⟨[u, v] = uvu<sup>-1</sup>v<sup>-1</sup> : u, v ∈ R⟩ denote the group of units of R and its derived group, respectively. If m ∈ M<sub>R</sub>, then we always have m(U(R))' ⊆ {m}; indeed, if u, v ∈ U(R), then m[u, v] = muvu<sup>-1</sup>v<sup>-1</sup> <sup>1</sup> ~ muvv<sup>-1</sup>u<sup>-1</sup> = m.

- Let *m* be a nonzero element in a module  $M_R$ . Also, let rann $(r) := \{s \in R \mid rs = 0\}$  and  $\operatorname{ann}(m) = \{x \in R \mid mx = 0\}$ . We say that *r* divides *m* if rann $(r) \subseteq \operatorname{ann}(m)$  and there exists  $m' \in M$  such that m = m'r.
- Recall that an element r in a ring R is called regular if there exists x in R such that r = rxr. We denote the set of regular elements by Reg(R).

Let  $m \in M_R$  be a nonzero element of a right *R*-module. Suppose  $r \in Reg(R)$  is such that  $rann(r) \subseteq ann(m)$ . Then  $mx\{r\} \subseteq \{m\}$ , where x is any quasi inverse of r, that is, we have r = rxr.

We say that an element  $m \in M_R$  is an *atom* if the only elements  $r \in R$  dividing *m* are the units elements of *R*.

We say that an element  $m \in M_R$  is an *atom* if the only elements  $r \in R$  dividing *m* are the units elements of *R*.

## Proposition

If  $p \in M$  is an atom, then we have  $p(U(R))' = \{p\}$ .

Let *R* be a unitary ring and  $a, b \in R$ . We write:

- Let S be a subset of a ring R. We define the symmetric closure of S as  $\widehat{S} = \bigcup_{s \in S} \widehat{\{s\}}$ .
- S is called symmetrically closed if  $S = \widehat{S}$ .
- For  $s \in \{c, *, \land\}$ , we define

 $S_n^s = \{ x \in R \mid \exists x_0 \in S \text{ such that } x \stackrel{s}{\sim}_n x_0 \}.$ 

In particular, for any  $s \in S$ , we have  $\{s\}^* = \bigcup_{n>0} \{s\}_n^*$ .

A ring *R* is called *Dedekind-finite* if for any  $a, b \in R$ , we have ab = 1 implies ba = 1.

A ring *R* is called *Dedekind-finite* if for any  $a, b \in R$ , we have ab = 1 implies ba = 1.

## Proposition

Let  $S \subseteq R$  be a subset of a Dedekind-finite ring R. Then the following statements hold:

- If S is a group, then  $\widehat{S}$  is a group as well.
- $\{1\}_n^*$  is the set of products of at most *n* commutators.
- The closed set {1} is the derived group U(R)' of the group of units of R.
- If  $S \subseteq U(R)$ , then  $\widehat{S} = S(U(R))'$ .

## Corollary

Let R be a ring. Then the following statements are equivalent:

- ♦ *R* is Dedekind-finite.
- $\blacklozenge \ \overline{\{1\}} = \{1\}.$
- $\blacklozenge \ \widehat{\{1\}} = U(R)'.$

Moreover, when *R* is Dedekind-finite, we have for any  $a \in U(R)$ ,  $\widehat{\{a\}} = a\widehat{\{1\}}$ .

#### Example

Let  $\mathbb{H}$  denote the division ring of *real quaternions*. For  $x = a_0 + a_1i + a_2j + a_3k \in \mathbb{H}$  we define  $N(x) = a_0^2 + a_1^2 + a_2^2 + a_3^2$ . Moreover, let  $\Gamma := \{x \in \mathbb{H} : N(x) = 1\}$ . Then  $\widehat{\{1\}} = \Gamma$ .

- A ring R is called *reversible* if for any a, b ∈ R, we have ab = 0 implies that ba = 0.
- A ring R is said to be *semi-commutative* if for any a, b ∈ R, we have ab = 0 implies aRb = 0. Furthermore, any reversible ring is semi-commutative.

- A ring R is called *reversible* if for any a, b ∈ R, we have ab = 0 implies that ba = 0.
- A ring R is said to be *semi-commutative* if for any a, b ∈ R, we have ab = 0 implies aRb = 0. Furthermore, any reversible ring is semi-commutative.

#### Proposition

If *R* is semi-commutative, then N(R) is symmetrically closed, where N(R) denotes the set of nilpotent elements of the ring *R*. In particular, this holds if *R* is reversible.

Let *D* be a division ring,  $n \in \mathbb{N}$ ,  $A \in M_n(D)$ , and  $GL_n(D)$  denotes the general linear group of non-singular  $n \times n$  matrices with entries in *D*. Also, let  $I_n$  denote the identity matrix. Then the following statements hold:

- $\blacklozenge \ \widehat{\{I_n\}} = GL_n(D)'.$
- If  $A \in GL_n(D)$ , then  $\widehat{A} = A\{\widehat{I_n}\}$ .
- If A is singular, then  $\widehat{A} = \widehat{\{0\}}$ .

Let *D* be a division ring,  $n \in \mathbb{N}$ ,  $A \in M_n(D)$ , and  $GL_n(D)$  denotes the general linear group of non-singular  $n \times n$  matrices with entries in *D*. Also, let  $I_n$  denote the identity matrix. Then the following statements hold:

 $\blacklozenge \ \widehat{\{I_n\}} = GL_n(D)'.$ 

• If 
$$A \in GL_n(D)$$
, then  $\widehat{A} = A\{I_n\}$ .

• If A is singular, then  $\widehat{A} = \widehat{\{0\}}$ .

#### Lemma

Assume that *R* and *S* are two rings, and  $(r, s) \in R \times S$ . Then  $\widehat{\{(r, s)\}} = \widehat{\{r\}} \times \widehat{\{s\}}$ .

Let *R* be a unitary ring *R* and  $s \in \{c, *, \land\}$ .

- ► The elements of a class determined by ~ can be seen as the set of vertices of a graph. Two elements x, y in the same class are said to be adjacent if x ~ 1 y.
- ▶ Let  $x, y \in R$  be such that  $x \stackrel{s}{\sim} y$ , we define  $d_s(x, y) = \min\{n \in \mathbb{N} \mid x \stackrel{s}{\sim}_n y\}$ . We adopt the convention that  $d_s(x, x) = 0$ . It is not hard to check that  $d_s$  is a distance. This distance corresponds to the minimal length of the paths between two elements (vertices) in a class determined by  $\stackrel{s}{\sim}$ .
- ▶ For a subset *S* of *R*, we define

diam<sub>s</sub>(S) = sup{ $d_s(x, y) \mid x, y \in S$  and  $x \stackrel{s}{\sim} y$ }.

Let R be a unitary ring. Then the following statements hold:

- If  $t \in \{\widehat{z}\}$ , then for any  $m \in \mathbb{N}$ ,  $t^m \in \{\overline{z^m}\}$ .
- A subset S of R is symmetrically closed and connected if and only if  $S = \{\widehat{z}\}$  for some  $z \in R$ .
- For any subset S of R, diam<sub>∧</sub>(S) ≤ diam<sub>∧</sub>(S) (respectively, diam<sub>\*</sub>(S) ≤ diam<sub>\*</sub>(S)).

Let S be a subset of a ring R. Then the following statements hold:

diam<sub>\*</sub>(S)  $\leq$  diam<sub>c</sub>(S). In particular, if diam<sub>c</sub>(S) (respectively, diam<sub>\*</sub>(S)) is finite (respectively, infinite), then diam<sub>\*</sub>(S) (respectively, diam<sub>c</sub>(S)) is finite (respectively, infinite).

If *R* is a non-commutative Dedekind-finite, then  $\operatorname{diam}_*(U(R)) = 1$ . In particular, if *D* is a division ring, then  $\operatorname{diam}_*(D) = 1$ .

Assume that z is an element in a ring R. If  $n \in \mathbb{N}$  is the minimal number such that  $\widehat{\{z\}} = \widehat{\{z\}}_n$ , then  $n \leq \operatorname{diam}_{\wedge}(\widehat{\{z\}}) \leq 2n$ .

Assume that z is an element in a ring R. If  $n \in \mathbb{N}$  is the minimal number such that  $\{\overline{z}\} = \{\overline{z}\}_n$ , then  $n \leq \operatorname{diam}_{\wedge}(\{\overline{z}\}) \leq 2n$ .

#### Proposition

Let *R* and *S* be two rings. Also, let  $\operatorname{diam}_{\wedge}(R) = n$  and  $\operatorname{diam}_{\wedge}(S) = m$ . Then  $\operatorname{diam}_{\wedge}(R \times S) = \max\{n, m\}$ . In addition, a similar result holds replacing  $\operatorname{diam}_{\wedge}$  by  $\operatorname{diam}_{*}$ .

## Let *D* be a division ring and $n \in \mathbb{N}$ . Then $\operatorname{diam}_{\wedge}(M_n(D)) \leq 2$ .

Symmetric closure in modules and rings Artois University August 29, 2023 19 / 23

문 문 문

Let D be a division ring and  $n \in \mathbb{N}$ . Then  $\operatorname{diam}_{\wedge}(M_n(D)) \leq 2$ .

#### Theorem

Let *R* be an Artinian semisimple ring. Then  $\operatorname{diam}_{\wedge}(R) \leq 2$ .

Symmetric closure in modules and rings Artois University August 29, 2023 19/23

э

Let D be a division ring and  $n \in \mathbb{N}$ . Then  $\operatorname{diam}_{\wedge}(M_n(D)) \leq 2$ .

#### Theorem

Let *R* be an Artinian semisimple ring. Then  $\operatorname{diam}_{\wedge}(R) \leq 2$ .

#### Theorem

Let *F* be a field and  $n \in \mathbb{N}$ . Then diam<sub> $\wedge$ </sub>( $M_n(F)$ ) = 1.

Let  $n \in \mathbb{N}$ , and let D be a division ring such that  $n \neq 2$  and  $D \neq \mathbb{F}_2$ . Let  $A, B \in GL_n(D)$  be two matrices such that  $B \in \{A\}$ . Let  $SL_n(D)$  denote the special linear group of degree n over D, which is the set of  $n \times n$  matrices with determinant 1. Then  $AB^{-1} \in SL_n(D)$  and  $d_*(A, B)$  is the minimal number of commutators required to express  $AB^{-1}$  as products of commutators in  $GL_n(D)$ .

Let  $n \in \mathbb{N}$ , and let D be a division ring such that  $n \neq 2$  and  $D \neq \mathbb{F}_2$ . Let  $A, B \in GL_n(D)$  be two matrices such that  $B \in \{A\}$ . Let  $SL_n(D)$  denote the special linear group of degree n over D, which is the set of  $n \times n$  matrices with determinant 1. Then  $AB^{-1} \in SL_n(D)$  and  $d_*(A, B)$  is the minimal number of commutators required to express  $AB^{-1}$  as products of commutators in  $GL_n(D)$ .

#### Proposition

- ▶ Let  $F^2 = F \in M_n(D)$  be of rank k. Then  $d_*(F, 0) \leq \lceil n/(n-k) \rceil$ .
- ▶ Let  $A, B \in M_n(D)$  be two singular matrices, and let A (respectively, B) be a product of  $k \ge 1$  (respectively,  $\ell \ge 1$ ) matrices similar to E = diag(1, ..., 1, 0). Then  $d_*(A, B) \le k + \ell$ .

► diam<sub>\*</sub>( $\{0\}$ )  $\leq 2n$ .

- Recall that a *strictly upper triangular* matrix is an upper triangular matrix having 1's along the diagonal and 0's under it, i.e., a matrix  $A = [a_{i,j}]$  such that  $a_{i,j} = 0$  for all  $i \ge j$  and  $a_{ii} = 1$ . We denote the set of all  $n \times n$  strictly upper triangular matrix over a ring R by  $U_n(R)$ .
- For a ring R and n ∈ N, we denote N<sub>n</sub>(R) as the set of elements of R that are nilpotent of index n.

Let R be a ring. Then the following statements hold:

- If *R* is semi-commutative, then, for each  $i \in \mathbb{N}$ , we have  $\{0\}_i^* \subseteq N_{2i}(R)$ . In particular,  $\{0\}^* \subseteq N(R)$ .
- For any strictly upper triangular matrix  $U \in M_n(R)$ , we have (a)  $U \in \{0\}_{n-1} \subseteq \{0\}$  and  $U \in \{0\}_{n-1}^* \subseteq \{0\}^*$ . (b)  $\operatorname{diam}_{\wedge}(U_n(R)) \leq 2(n-1)$  and  $\operatorname{diam}_*(U_n(R)) \leq 2(n-1)$  for all  $n \geq 2$ .

# Thank you for your attention

Symmetric closure in modules and rings Artois University August 29, 2023 23 / 23